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Abstract
In the framework of effective mass and single-band approximations, a variational method
combined with a self-consistent procedure is adopted to discuss the binding energies of
heavy-hole excitons in a strained wurtzite GaN/Al0.3Ga0.7N quantum well by considering the
hydrostatic pressure effect and screening due to the electron–hole gas. The built-in electric field
in such a structure produced by spontaneous polarization and strain-induced piezoelectric
polarization is considered in our calculation. A simplified coherent potential approximation is
extended to calculate the energy gaps of the ternary mixed crystal Alx Ga1−x N. The result
indicates that the binding energies of excitons increase nearly linearly with pressure even when
taking into consideration the modification of strain. It is also found that the percentage increase
of the binding energy with pressure is influenced by the electron–hole density due to the
influence of pressure on the screening and exclusion effects. The excitonic binding energies
increase obviously with decreasing barrier thickness due to the built-in electric field.

1. Introduction

In recent decades, low-dimensional structures made of wurtzite
group-III nitride semiconductors such as AlN, GaN and
InN have attracted much attention due to their promising
applications in short-wavelength electroluminescence devices,
such as light-emitting diodes (LED) and laser diodes
(LDs) [1–3]. In particular, it is known that a large spontaneous
polarization and strain-induced piezoelectric polarization are
present in these relatively low-symmetry wurtzite structures
to play an important role in determining the optical and
electrical properties via polarization-induced built-in electric
fields [4, 5].

The hydrostatic pressure modifications of the physical
properties of nitride based low-dimensional structures are
available and helpful for exploring new phenomena and
improving devices. Wagner et al [6] presented ab initio
calculations of the structural, dielectric and lattice-dynamical
properties of zinc-blende and wurtzite GaN and AlN

under hydrostatic pressure. Gõni et al [7] investigated
experimentally the pressure modification of the phonon modes
in wurtzite (hexagonal) and zinc-blende (cubic) GaN and
wurtzite AlN. Łepkowski et al [8] studied the influence of
hydrostatic pressure on the light emission from a strained
GaN/AlGaN multi-quantum-well system. It was found
that the coefficient describing pressure dependence of the
peak photoluminescence energy was reduced with respect
to the pressure dependence of the energy gap; this could
be explained by the hydrostatic pressure-induced increase
of the piezoelectric field in the quantum structures. In
a similar way, Vaschenko et al [9] explored the dominant
role of the piezoelectric field under pressure for InGaN/GaN
quantum wells (QWs) and obtained two important conclusions:
(1) a strong effect of the built-in piezoelectric field on the
emission characteristics of InGaN/GaN QWs under hydrostatic
pressure was shown; (2) an increase of the piezoelectric field
with hydrostatic pressure was explained by the significant
dependence of the InGaN piezoelectric constants on strain.
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Usually, the pressure effect on GaAs/AlxGa1−xAs
heterostructures may be simple since the strain can be
neglected due to the interface lattice matching. Using
a linear interpolation and variation method, Ban et al
[10] studied the pressure effect on the binding energies of
donors in a realistic GaAs/Alx Ga1−x As heterojunction. More
recently, the binding energies of excitons in a GaAs/AlAs
QW were investigated [11]. Then, they [12] calculated
the binding energies of donors in QWs under pressure
for GaAs/Alx Ga1−x As and zinc-blende GaN/Alx Ga1−x N
structures (without strain), respectively. Their results showed
that pressure obviously enhances the binding energies of
donors and excitons. On the other hand, Bigenwald et al
[13, 14] calculated the exciton states assuming the presence of
an electron–hole (EH) plasma created by photoexcited carriers,
and obtained a non-monotonic behavior of the exciton binding
energy as a function of the EH density. Unfortunately, the
kinetic energy of an EH pair dissociated from an exciton
was neglected in their calculation of the binding energy.
More recently, Kalliakos et al [15] investigated the effects
of large EH pair density on the excitonic energy spectra of
hexagonal group-III nitride QWs such as GaN/AlxGa1−xN or
InyGa1−yN/GaN, by solving self-consistently the Schrödinger
and Poisson equations to calculate the charges of emission
and absorption spectra induced by the screening of the large
internal electric field.

However, the influence of screening, due to the two-
dimensional free EH gas, on the binding energies of heavy-
hole excitons in strained QWs under the hydrostatic pressure
has not been investigated. This motivated us to discuss the
pressure effect on the binding energies of heavy-hole excitons
confined in a strained wurtzite GaN/AlGaN QW. The thickness
effect of barriers is also considered here. Furthermore, the
influence of Fermi energy as a function of EH density on the
binding energy is considered here to improve upon the previous
works [13, 14]. Within the framework of effective mass and the
single-band approximation, the results indicate that pressure
obviously increases the excitonic stability, and the percentage
increase of the binding energy with pressure is influenced by
the EH density. Moreover, it was found that the excitonic
binding energies increase as the barrier thickness decreases
due to the built-in electric field. This effect is opposite to the
quantum confinement effect of a QW.

2. Theory and calculation

In the following, the Schrödinger equation is introduced first,
followed by a discussion of the pressure and strain dependence
of the parameters (band gap, effective mass and static electric
field) in this equation. The Poisson equation for the self-
consistent potential is then presented, and the pressure together
with strain dependence of the dielectric constant is discussed.
Finally the variational ansatz for the wavefunction is given, and
the calculation of binding energy is described.

2.1. Schrödinger equation

A strained wurtzite GaN/Al0.3Ga0.7N QW with finite height
barriers under the influence of a two-dimensional (2D) EH

gas is considered to calculate the binding energies of heavy-
hole excitons as functions of the EH density under hydrostatic
pressure. The 2DEH gas is created by photoexcited carriers
to induce a transverse electric field. Moreover, the biaxially
and uniaxially strained QW excites large built-in electric fields.
Without loss of generality, the interfaces of the QW are chosen
as parallel to the x–y plane with the well center at the zero
point in the z direction.

It is obvious that the motion of carriers in the z direction is
quantized and can be separated from the plane wave in the x–y
direction. To determine the ground state for electrons (holes) in
a QW in the z direction, a self-consistent procedure is adopted
by solving both the Schrödinger and Poisson equations [13].
The Schrödinger equation for an electron (hole) in the growth
direction z can be written as{
− h̄2

2

∂

∂z

[
1

m⊥
j (z)

∂

∂z

]
+ Vj(z)+ qj[F(z)+ ϕj(z)]z

}
ψj(z)

= Ejψj(z), (1)

where the superscript j = e, h denotes the electron and hole,
respectively. The charge qj is e for an electron and −e for a
hole, respectively.

2.2. Pressure and strain dependence of parameters in the
Schrödinger equation

In the strained wurtzite nitride QW, the ratio of the conduction
band to the valence band offset is given to be 65:20 [16]. Then,
the strain-affected band offsets are given as

Ve(z) =
{

0 in well

V0,e = 0.765(Eg,b − Eg,w) in barriers,
(2)

Vh(z) =
{

0 in well

V0,h = 0.235(Eg,b − Eg,w) in barriers.
(3)

In the above equations, the pressure- and strain-dependent
energy gaps [17] of GaN and AlN are

Eg,w = Eg,w(p)+2(d1,w+b1,w)εxx,w+(d2,w+b2,w)εzz,w, (4)

Eg,b(AlN) = Eg,b(AlN)(p)+ 2d1,bεxx,b + d2,bεzz,b, (5)

where d1,i, d2,i, b1,i and b2,i are the deformation potentials,
for which the superscript i = w, b donates the well and
barrier materials, respectively. The dependence of the energy
gap on hydrostatic pressure p is considered by the following
equation [18]

Eg,i(p) = Eg,i + αi p. (6)

Here, we extend a simplified coherent potential approxi-
mation [19] to calculate the energy gap of ternary mixed crystal
Alx Ga1−xN (chosen as the barriers):

Eg,b = Eg,w Eg,b(AlN)

x Eg,w + (1 − x)Eg,b(AlN)
. (7)

In the well and barriers, the biaxial lattice-mismatch-
induced strains are given as

εxx,w = εyy,w = aeq(p)− aw(p)

aw(p)
, (8)
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and

εxx,b = εyy,b = aeq(p)− ab(p)

ab(p)
, (9)

where aeq represents the equilibrium, or actual, lattice constant
for the strained layer. It is given by [20]

aeq(p) = aw(p)Lw + ab(p)Lb

Lw + Lb
. (10)

For infinitely thick barriers (Lb → ∞), it is replaced by
aeq = ab.

The lattice constant as a function of hydrostatic
pressure [21] is given by

ai(p) = ai(0)

(
1 − p

3B0,i

)
. (11)

The bulk modulus in a wurtzite structure is given by the elastic
constants C11, C12, C13 and C33 as

B0,i = (C11,i + C12,i)C33,i − 2C2
13,i

C11,i + C12,i + 2C33,i − 4C13,i
. (12)

The stress tensors εxx,i and εzz,i under hydrostatic pressure
are equal, and from Hooke’s law the uniaxial and biaxial strain
tensor ratio can be expressed by [22]

εzz,i

εxx,i
= C11,i + C12,i − 2C13,i

C33,i − C13,i
. (13)

Following the above procedure for determining energy
gaps, the biaxial, uniaxial and hydrostatic pressure depen-
dences of the effective masses of an electron [23] in the z di-
rection and the x–y plane can be calculated by

m0

m⊥,‖
e,i (p)

= 1 + C

Eg,i(p)
. (14)

Here C is a constant and can be determined by solving
equation (14) at p = 0. In general, the pressure coefficient
for a heavy-hole is assumed to be zero.

In equation (1), the internal electric field F(z) is
different in the well and barrier materials. To calculate
it, the spontaneous and piezoelectric polarizations must be
considered in a wurtzite structure as follows [8]:

Fw = Lb(P
pz
b + Psp

b − Ppz
w − Psp

w )

Lbκ0w + Lwκ0b
, (15)

and

Fb = Lw(P
pz
w + Psp

w − Ppz
b − Psp

b )

Lbκ0w + Lwκ0b
, (16)

where the data of spontaneous polarization Psp
i (i = b,w) were

given in [24], and the strain-induced piezoelectric polarizations
are written as [8]:

Ppz
i = 2e31,iεxx,i + e33,iεzz,i, (17)

where e31,i and e33,i are the strain-dependent piezoelectric
constants satisfying [9]

e31,i = e(0)31,i +
4eZ i√

3a2
i

dui

dεxx,i
, (18)

and

e33,i = e(0)33,i +
4eZ i√

3a2
i

dui

dεzz,i
. (19)

For infinitely wide barriers, the built-in electric filed in
the barriers will vanish, whereas Fw can be obtained by
equation (15) with the limit of Lb → ∞.

2.3. Poisson equation

In equation (1), the free-carrier-induced field ϕj(z) can be
obtained by solving the Poisson equation

ϕj(z + dz)− ϕj(z) = qj Ns

∫ z+dz

z
f (u)

du

κ0,zz(u)
, (20)

where f (u) = ψ2
e (u) − ψ2

h (u). κ0,zz(u) is the static dielectric
constant of material dependence, and Ns is the EH density.
Here, the single particle (electron or hole) energy level Ej and
wavefunction ψj(z) can be obtained by solving equations (1)
and (20) self-consistently.

The Hamiltonian for an exciton can be written as

He−h = − h̄2

2μe−h

1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+ eϕe−h(ze, zh, ρ), (21)

where ρ is the distance between the electron and hole in the
x–y plane, and μe−h = m‖

em‖
h/(m

‖
e + m‖

h) is the reduced mass
of the exciton, in which m‖

e and m‖
h are the effective masses of

the electron and hole parallel to the x–y plane, respectively.
The screened Coulombic potential [13, 14] is given in the
representation of the resultant mixed (z, q) by

eϕe−h(ze, zh, q) = e2

4πκ0q

×
{

e−q|ze−zh| − [∫ du e−q|u−ze+zh| f (u)]2

q
qs

+ ∫
du f (u)

∫
du′ f (u′)e−q|u−u′ |

}
,

(22)

where qs = 2μe2/4πκ0h̄2 is the reciprocal screening radius. A
variational method will be used later to calculate the variational
energy of the exciton.

2.4. Pressure and strain dependence of the dielectric
constants

In equation (22), the static dielectric constant κ0 is influenced
by the biaxial, uniaxial and hydrostatic pressures, respectively.
The tensor components of κ0 for the wurtzite structure are
derived from the generalized Lyddane–Sachs–Teller relation

κ0,αα = κ∞,αα

(
ωLO,αα

ωTO,αα

)2

. (23)

The frequencies of LO- and TO-phonons influenced by
pressure and strain can be written as [22]

ω j,αα = ω j,αα(p)+ 2K j,xxεxx + K j,zzεzz, (24)

where K j,xx and K j,zz are the strain coefficients of phonon
modes given in [22]. The tensor component (α = z, x) is

3
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Figure 1. Built-in electric fields as functions of the hydrostatic
pressure in QWs with infinite (solid line) and finite thickness
(dashed line) barriers, respectively.

related to the LO- and TO-phonon frequencies, respectively.
Furthermore, the hydrostatic pressure dependence of ω j,αα(p)
can be determined by the given mode Grüneisen parameter

γ j,αα = B0
1

ω j,αα

∂ω j,αα(p)

∂p
. (25)

Considering the influence of hydrostatic pressure, biaxial
and uniaxial strains, the high frequency dielectric constant in
equation (23) can be rewritten as [25]

∂κ∞,αα(p)

∂p
= −5(κ∞,αα − 1)

3B0
(0.9 − fion), (26)

where fion is the ionicity of the material under pressure.

2.5. Variational ansatz and binding energy

A one-parameter trial wavefunction in the x–y plane for an
exciton taking into account the filling of the reciprocal space
below the Fermi level was determined by Pikus [26]

ψ(ρ) = Ae−βρ cos(kFρ), (27)

where kF is the Fermi vector defined by kF = √
2πNs at zero

temperature [27].
Combining equations (1) and (21) with (27), the

variational energy of an exciton in the ground state can be
written as

Ee−h = 〈ψ|He−h|ψ〉
=

∫
dze |ψe(ze)|2

∫
dzh |ψh(zh)|2

∫
d2ρ ψ∗(ρ)He−hψ(ρ).

(28)

Then the total variational energy is given by

E(β) =
∑
j=e,h

Ej + Ee−h. (29)

As a result, the excitonic binding energy for the ground
state can be written as

Eb = Efree − E, (30)

Figure 2. Binding energies of excitons screened by the EH gas in the
strained GaN/Al0.3Ga0.7N QWs with infinite (solid line) and finite
(dashed line) thickness barriers as functions of the EH density under
0 GPa, respectively.

where E is the ground state energy of the exciton and
can be obtained by minimizing E(β) with respect to β .
Efree is the ground state energy of the free electron and
hole, which can be obtained by repeating the above process
but removing the Coulombic potential in equation (21) and
replacing equation (27) by ψ(ρi) = ei�kF · �ρi/2π for the electron
(i = e) and hole (i = h). Then the energy for free-carriers is
given as

Efree =
∑
i=e,h

Ei + EFermi, (31)

where the Fermi energy is as follows:

EFermi = h̄2k2
F

2m‖
e

+ h̄2k2
F

2m‖
h

= h̄2k2
F

2μe−h
. (32)

The contribution given by equation (32) for free electron
and hole energies was ignored in [13, 14] when the authors
calculated the binding energy. The QW contains the EH
carriers occupying the lower QW subbands; thus the kinetic
energy of the unbound EH pair can be estimated as the energies
at the Fermi levels to correct Eb by equation (30).

3. Results and discussion

In this section, the binding energies of heavy-hole excitons in
a biaxially and uniaxially strained wurtzite GaN/Al0.3Ga0.7N
QW are computed by considering hydrostatic pressure effect
and screening due to the EH gas. The parameters used in our
computation are listed in tables 1–3. The calculated results are
shown in figures 1–5, respectively.

Figure 1 shows the increases in the built-in electric field
as the hydrostatic pressure for QWs with infinite and finite
thickness barriers, respectively. Without losing generality, the
finite thickness of barriers is taken to be equal to the thickness
of a well (50 Å) to see the thickness effect of barriers. The
calculated built-in electric fields in the well and barriers are
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Table 1. Physical parameters of wurtzite GaN and AlN used in the computation. The parameters of Alx Ga1−x N were calculated with the
linear interpolation method. The lattice constants are in units of angstroms, piezoelectric constants in C m−2, the elastic constants in GPa, and
the spontaneous polarization in C m−2, respectively.

a C11 C12 C13 C33 u Z e(0)31 e(0)33 Psp

GaN 3.189a 390a 145a 106a 398a 0.377b 1.18b −0.49c 0.73c −0.029c

AlN 3.122a 398a 140a 127a 382a 0.382b 1.27b −0.60c 1.46c −0.081c

a Reference [28].
b Reference [22].
c Reference [24].

Table 2. Physical parameters of wurtzite GaN and AlN used in the computation. The energy gaps and deformation potentials are in units of
meV, and the effective masses in the bare electron mass m0, respectively.

Eg d1 d2 b1 b2 α m⊥
e m‖

e m⊥
h m‖

h

GaN 3390a −4090b −8870b −7020b 3650b 3.3c 0.19d 0.23d 0.37e 2.09e

AlN 6200a −3390b −1180b −9420b 4020b 4.3c 0.33e 0.32e 0.73e 3.52e

a Reference [29].
b Reference [22].
c Reference [30].
d Reference [31].
e Reference [32].

Table 3. Physical parameters of wurtzite GaN and AlN used in the computation. The frequencies are in units of cm−1.

κ∞,xx κ∞,zz ωLO,xx ωLO,zz ωTO,xx ωTO,zz γLO,xx γLO,zz γTO,xx γTO,zz fion

GaN 5.20a 5.39a 757b 748b 568b 540b 0.91b 0.82b 1.18b 1.02b 0.5c

AlN 4.30a 4.52a 924b 898b 677b 618b 0.99b 0.98b 1.19b 1.21b 0.499c

a Reference [22].
b Reference [6].
c Reference [33].

Figure 3. Binding energies of excitons in the strained
GaN/Al0.3Ga0.7N QWs with infinite (solid line) and finite thickness
(dashed line) barriers as functions of the pressure under EH density
1 × 1014 m−2, respectively.

equal, whereas the field in the well is negative and opposite to
the growth direction of the QW, and the field in the barriers is
positive and along the growth direction. Moreover, the absolute
values for both cases increase with the hydrostatic pressure.
When the barrier is assumed to be infinitely thick, the built-

Figure 4. Binding energies of excitons in strained GaN/Al0.3Ga0.7N
QWs with infinite thickness barriers as functions of the EH densities
under pressures of 0 (solid line), 5 (dashed line) and 10 GPa
(dotted line), respectively. The dash–dotted line represents the
binding energies of excitons defined in [13, 14] as a function of the
EH density.

in electric field in the barriers will vanish. It can be seen that
the thickness of the barriers obviously influences the built-in
electric field. The pressure effect on the field varying with

5
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Figure 5. Binding energies of excitons in the strained
GaN/Al0.3Ga0.7N QWs with infinite thickness barriers as functions of
the pressure under the EH densities of 1 × 1013 m−2 (solid line),
1 × 1014 m−2 (dashed line) and 1 × 1015 m−2 (dotted line),
respectively.

thickness of the barriers is insensitive since the increases of
the built-in electric fields are 3.95% and 4.23%, respectively,
for infinite and finite thickness barriers as pressure increases
from 0 to 10 GPa.

Figure 2 shows the binding energies of excitons screened
by the EH gas in the strained QWs with infinite and finite
thickness barriers as functions of the EH density, respectively.
The result indicates that binding energies of excitons in the two
cases both first increase slowly to a maximum with increasing
density of EH gas and then decrease rapidly when the density
is larger than about 1 × 1015 m−2. It is clearly seen that the
binding energy of the exciton in a QW with finite thickness
barriers is larger than that in a QW with infinite thickness
barriers because of the smaller built-in electric field for the
former. The electric field will separate the electron and
hole in opposite directions to decrease the excitonic binding
energy, and the larger (wider barriers) the electric field is, the
lower the binding energy. The field in a QW with infinite
thickness barriers is nearly twice as large as the finite ones,
and the binding energy decreases by 11.4% compared with the
latter one. This effect may weaken the quantum confinement
effect of a QW. For a larger EH density, the thickness effect
of barriers decreases somewhat since the competition from
screening of the EH gas increases rapidly.

Figure 3 gives the binding energies of excitons in the
strained QWs with infinite and finite thickness barriers,
respectively, as functions of the hydrostatic pressure. It
shows that the binding energies of the excitons increase nearly
linearly on increasing the pressure in QWs with both infinite
and finite thickness barriers. The finite thickness of barriers
increases the binding energy by 11.6% with respect to the
infinite case.

Figure 4 shows the binding energies of excitons in a
strained GaN/Al0.3Ga0.7N QW as functions of the EH densities
under different pressures, for which the thickness of the barrier
is adopted to be infinite. The changing tendency of the exciton

binding energies with the EH density at 5 and 10 GPa is similar
to that at zero pressure. It shows that the binding energy is more
stable for a low EH density, and increases beginning from some
EH density and then slowly reaching a maximum. The result
agrees qualitatively with the conclusion in [14]. The binding
energies of excitons defined in [13, 14] as a function of the
EH density under zero pressure are also shown in the figure.
It can be clearly seen that the difference between the binding
energies with the two different definitions becomes obvious for
higher EH densities because the rise (drop) of the Fermi level
for the electron (hole) is more remarkable with increasing EH
density. Thus, the ratio of the difference in the binding energy
(defined in [13, 14]) increases from 0.02% to 22.5% for EH
density from 1×1012 to 1×1015 m−2. It should be pointed out
that the Pikus ansatz is unsuitable for a very higher EH density
near which the exciton collapses [34].

Figure 5 shows the binding energies of excitons in a
strained GaN/Al0.3Ga0.7N QW with a finite thickness barrier
calculated as functions of the pressures for EH densities of
1 × 1013, 1 × 1014 and 1 × 1015 m−2, respectively. The
result indicates that the binding energies of excitons increase
nearly linearly on increasing the pressure for a given EH
density. As pressure increases from 0 to 10 GPa, the binding
energy increases by about 11.41%, 11.36% and 18.98% for EH
densities of 1 × 1013 m−2, 1 × 1014 m−2 and 1 × 1015 m−2,
respectively. The exciton binding energy as a function
of EH density was explained in [13, 14] at zero pressure,
whereas pressure has a slight influence on ‘the screening and
exclusion effects’ at lower EH densities but decreases the
effects dramatically at an EH density of �1 × 1015 m−2.
Together with figure 4, it is seen that the pressure obviously
increases the excitonic stability and lowers the maximum
points slightly.

4. Summary

In summary, the binding energies of heavy-hole excitons in
a biaxially and uniaxially strained wurtzite GaN/Al0.3Ga0.7N
QW are discussed by considering the hydrostatic pressure
effect and screening due to the EH gas. A variational method
and a self-consistent procedure are combined to calculate the
binding energies influenced by the spontaneous polarization
and strain-induced piezoelectric polarization-induced built-in
electric fields, which is enhanced by the pressure. The result
indicates that the binding energies of excitons increase nearly
linearly with pressure, even the modification of strain with
hydrostatic pressure is considered and the percentage increase
of the binding energy with pressure is influenced by the
EH density. The pressure obviously increases the excitonic
stability and slightly lowers the maximum points. The decrease
in barrier width increases the stability, and may weaken the
quantum confinement effect of a QW.
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